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ABSTRACT

Numerical simulations of weakly magnetized and strongly magnetized rela-

tivistic jets embedded in a weakly magnetized and strongly magnetized stationary

or weakly relativistic (v = c/2) sheath have been performed. A magnetic field

parallel to the flow is used in these simulations performed by the new GRMHD

numerical code RAISHIN used in its RMHD configuration. In the numerical

simulations the Lorentz factor γ = 2.5 jet is precessed to break the initial equi-

librium configuration. In the simulations sound speeds are . c/
√

3 in the weakly

magnetized simulations and . 0.3 c in the strongly magnetized simulations. The

Alfvén wave speed is . 0.07 c in the weakly magnetized simulations and . 0.56 c

in the strongly magnetized simulations. The results of the numerical simula-

tions are compared to theoretical predictions from a normal mode analysis of

the linearized relativistic magnetohydrodynamic (RMHD) equations capable of

describing a uniform axially magnetized cylindrical relativistic jet embedded in

a uniform axially magnetized relativistically moving sheath. The theoretical dis-

persion relation allows investigation of effects associated with maximum possible

sound speeds, Alfvén wave speeds near light speed and relativistic sheath speeds.

The prediction of increased stability of the weakly magnetized system resulting

from c/2 sheath speeds and the stabilization of the strongly magnetized system

resulting from c/2 sheath speeds is verified by the numerical simulation results.
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1. Introduction

Relativistic jets are associated with galaxies and quasars (AGN), with black hole binary

star systems, and are thought responsible for the gamma-ray bursts (GRBs). In AGN and

microquasar jets proper motions of intensity enhancements indicate motions that are mildly

superluminal for the microquasar jets ∼ 1.2 c (Mirabel & Rodriquez 1999), and range from

subluminal (≪ c) to superluminal (. 6 c) along the M 87 jet (Biretta et al. 1995, 1999), up

to ∼ 25 c along the 3C 345 jet (Zensus et al. 1995; Steffen et al. 1995), and have inferred

Lorentz factors γ > 100 in the GRBs (e.g., Piran 2005). The various observed proper motions

along AGN and microquasar jets imply speeds from ∼ 0.9 c up to ∼ 0.999 c, and the inferred

speeds for the GRBs are ∼ 0.99999 c.

Jets at the larger scales may be kinetically dominated and contain relatively weak mag-

netic fields, e.g., equipartition between magnetic and gas pressure or less, but the possibility

of much stronger magnetic fields certainly exists closer to the acceleration and collimation

region. Here general relativistic magnetohydrodynamic (GRMHD) simulations of jet for-

mation (e.g., Koide et al. 1998, 1999, 2000; Nishikawa et al. 2005; De Villiers et al. 2003,

2005; Hawley & Krolik 2006; McKinney & Gammie 2004; McKinney 2006; Mizuno et al.

2006b) and earlier theoretical work (e.g., Lovelace 1976; Blandford 1976; Blandford & Zna-

jek 1977; Blandford & Payne 1982) invoke strong magnetic fields. Additionally, Vlahakis

and Konigl have argued that magnetically dominated “Poynting flux” jets could produce the

accelerations observed in AGN jets such as that in NGC 6251 and 3C 345 (Vlahakis & Konigl

2004) or provide the impetus for high Lorentz factor gamma-ray bursts outflows (Vlahakis &

Konigl 2003). In these cases acceleration occurs up to the point at which Poynting fluxes and

kinetic energy fluxes become comparable. In addition to strong magnetic fields, a number

of GRMHD simulation studies of jet formation indicate that highly collimated high speed

jets driven by the magnetic fields threading the ergosphere may themselves reside within

a broader wind or sheath outflow driven by the magnetic fields anchored in the accretion

disk (e.g., McKinney 2006; Hawley & Krolik 2006; Mizuno et al. 2006b). This configura-

tion might additionally be surrounded by a less collimated accretion disk wind from the hot

corona (e.g., Nishikawa et al. 2005).

Recent observations of high speed winds in several QSO’s with speeds, ∼ 0.1 − 0.4c,

also indicate that a highly relativistic jet could reside in a high speed wind or sheath, at

least close to the central engine (Chartas et al. 2002, 2003; Pounds et al. 2003a, 2003b;

Reeves et al. 2003). For some time other observational evidence such as limb brightening has

been interpreted as evidence for a slower external flow surrounding a faster jet spine, e.g.,

Mkn 501 (Giroletti et al. 2004), M 87 (Perlman et al. 2001), and a few other radio galaxy

jets (e.g., Swain et al. 1998; Giovannini et al. 2001). Additional circumstantial evidence
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such as the requirement for large Lorentz factors suggested by the TeV BL Lacs when

contrasted with much slower observed motions has been used to suggest the presence of a

spine-sheath morphology (Ghisellini et al. 2005). Siemignowska et al. (2006) have proposed a

two component (spine-sheath) model to explain the broad-band emission from the PKS 1127-

145 jet. Additionally, a spine-sheath jet structure has been proposed based on theoretical

arguments (e.g., Sol et al. 1989; Henri & Pelletier 1991; Laing 1996; Meier 2003) and similar

type structure has been investigated in the context of GRB jets (e.g., Rossi et al. 2002;

Lazzatti & Begelman 2005; Zhang et al. 2003, 2004; Morsony et al. 2006).

In most jet generation numerical and theoretical work it has been necessary to assume an

axisymmetric configuration. Given the helicity in the real system, e.g., helical magnetic field

or outwards flow combined with rotation, there exists a potential problem with the stability

of the system. Obviously, at least for most AGN jets, stability problems are surmounted and

a highly collimated relatively stable flow is produced. In this paper we begin a 3D numerical

study of the stability properties of highly relativistic jet flows allowing for the effects of

strong magnetic fields and relativistic flow in a sheath around the highly relativistic jet.

We note that observed relatively stable jet flow along with observed jet structures might

then be used to constrain the configuration in the acceleration and collimation region where

magnetic field strengths are high.

In the past, 3D numerical simulations of relativistic unmagnetized jets along with ac-

companying theoretical work (e.g., Hardee et al. 2001; Agudo et al. 2001; Hardee & Hughes

2003) has provided relatively unambiguous interpretation and understanding of structures

observed in the numerical simulations. Thus, we begin our study by adopting a simple

system, no radial dependence of quantities inside the jet and also no radial dependence of

quantities outside the jet. This “top hat” configuration can be described exactly by the

linearized RMHD equations. In general, the system consisting of a jet with “top hat” pro-

file and magnetic field parallel to the flow along with a uniform external medium also with

magnetic field parallel to the flow is more stable than a system with magnetic and flow

helicity. Such a system is stable to current driven (CD) modes of instability (Istomin &

Pariev 1994, 1996; Lyubarskii 1999) but can be unstable to Kelvin-Helmholtz (KH) modes

of instability (Hardee 2004). This approach allows us to look at the potential KH modes

without complications arising from coexisting CD modes (see Baty et al. 2004)

This paper is organized as follows. In section 2, we describe the numerical simulation

setup and present the results of the three-dimensional RMHD simulations of spine-sheath

relativistic jets. In section 3, we present the theoretical dispersion relation that arises from

a normal mode analysis of the linearized RMHD equations, present relevant analytical ap-

proximate solutions, numerically solve the dispersion relation for the simulation parameters
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and compare to the simulation results. In section 4 we conclude.

2. Numerical Simulations of Spine-Sheath Jets

2.1. Numerical Method

In order to study the long-term stability of magnetized sheath-spine relativistic jets,

we use the 3-dimensional GRMHD code “RAISHIN” with Cartesian coordinates in special

relativity. The method is based on a 3+1 formalism of the general relativistic conservation

laws of particle number and energy momentum, Maxwell equations, and Ohm’s law with no

electrical resistance (ideal MHD condition) in a curved spacetime (Mizuno et al. 2006a). The

RAISHIN code performs special relativistic calculations in Minkowski spacetime by changing

the metric.

In the RAISHIN code, a conservative, high-resolution shock-capturing scheme is em-

ployed. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL)

approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme

is used to maintain a divergence-free magnetic field. The RAISHIN code has proven to be

accurate to second order and has passed a number of numerical tests including highly rela-

tivistic cases, and highly magnetized cases in both special and general relativity (Mizuno et

al. 2006a).

In the simulations a “preexisting” jet flow is established across the computational do-

main. This setup represents the case in which the jet is in equilibrium with an external

medium far behind the leading edge Mach disk and bow shock. We allow the jet flow to be

surrounded by a lower-density external magnetized wind medium. For all simulations, the

ratio of densities is ρj/ρe = 2.0, where ρ is the mass density in the proper frame. The jet

flow has uj = 0.9165c and γ ≡ (1 − u2)−1/2 = 2.5. The initial magnetic field is assumed

to be uniform and parallel to the jet flow. The jet is established in static total pressure

balance with the external magnetized wind medium. Our choice of colder jet in a hotter

wind is representative of a jet spine in a hotter sheath or cocoon as might occur as a result of

astrophysical jet interaction with the surrounding medium. However, the specific parameters

have been chosen for numerical and theoretical comparison convenience.

The computational domain is 6Rj ×6Rj ×60Rj with 60×60×600 computational zones

(10 computational zones span Rj). We impose outflow boundary conditions on all surfaces

except the inflow plane at z = 0.

A precessional perturbation is applied at the inflow by imposing a transverse component
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of velocity with u⊥ = 0.01uj. Simulations have been performed with precessional perturba-

tions of angular frequency ωRj/uj = 0.40 (simulation A, ω1), 0.93 (simulation B, ω2) and

2.69 (simulation C, ω3). The simulations are halted after ∼ 60 light crossing times of the

jet radius, before the perturbation has crossed the entire computational domain.

We have performed two sets of simulations. RHD cases are weakly magnetized (see

Table 1). The relevant sound speeds are ae = 0.574c and aj = 0.511c, where the sound speed

a is given by

a ≡
[

Γp

ρ + (Γ/Γ − 1)(p/c2)

]1/2

, (1)

with Γ = 13/6 as the adiabatic index appropriate to a mixture of relativistically hot electrons

and cold baryons (Synge 1957). The relevant Alfvén speeds are vAe = 0.0682c and vAj =

0.064c , where the Alfvén speed vA is given by

vA ≡
[

B2

ρ + (Γ/Γ − 1)(p/c2) + B2

]1/2

. (2)

Therefore the Alfvén speed is much smaller than sound speed. RMHD cases are strongly

magnetized (see Table 1). The relevant sound speeds are ae = 0.30c and aj = 0.226c. The

relevant Alfvén speeds are vAe = 0.56c and vAj = 0.45c. In this case the Alfvén speeds are

approximately twice the sound speeds. In order to investigate the effect of an external wind,

we have performed a no wind case (ue = 0, simulation ‘n’) and a mildly relativistic wind

case (ue = 0.5 c, simulation ‘w’).

2.2. Numerical Results

Figure 1 illustrates the difference in jet structure for weak magnetization with no wind

and with an external wind. Specifically we show results from the intermediate precession

frequency, ω2 ≡ ωRj/uj = 0.93, (cases RHDBn and RHDBw) at simulation time t = 60.

Precession at the jet inflow plane excites the helical KH mode which is advected down the

jet and grows. The isovolume image shows that beyond z ∼ 30Rj with no wind jet flow is

disrupted, and the magnetic field is strongly bent and distorted. Transverse 2D slices through

the jet axis (panels 1b & 1c) show a smaller density (pressure) fluctuation associated with

the leading edge of the helix in the presence of the external wind. Transverse 2D slices

perpendicular to the jet axis at z = 30Rj (panels 1c & 1f), suggest a less distorted jet in

the presence of the external wind. Transverse velocities shown by the arrows indicate a

circulation around the jet associated with the helical twist that is much more regular in the

presence of the external wind.



– 6 –

Fig. 1.— Three-dimensional isovolume image (panels a, d) and two-dimensional axial (panels

b, e) and transverse (panels c, f) slices made at z = 30Rj and simulation time t = 60 for

the weakly magnetized cases with precession frequency ω = 0.93. Panels a, b & c are

for no wind (RHDBn) and panels d, e & f are with a wind (RHDBw). The colors show

the logarithm of density, white lines indicate magnetic field lines (a, d), and arrows depict

transverse velocities.
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Fig. 2.— Three-dimensional isovolume image (panels a, d) and two-dimensional axial (panels

b, e) and transverse (panels c, f) slices made at z = 30Rj and simulation time t = 60 for

the strongly magnetized cases with precession frequency ω = 0.93. Panels a, b & c are for

no wind (RMHDBn) and panels d, e & f are with a wind (RMHDBw). The colors show

the logarithm of density, white lines indicate magnetic field lines (a, d)and arrows depicts

transverse velocities.
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Figure 2 illustrates jet structure for the strongly magnetized cases with no wind and with

an external wind. As in Figure 1 we show results for the intermediate precession frequency,

ω2, (cases RMHDBn and RMHDBw) at simulation time t = 60. In the no wind case the

helical KH mode grows but more slowly than in the weakly magnetized cases shown in Figure

1 and does not disrupt the jet inside z ∼ 40Rj. A weakly twisted helical flow and magnetic

structure develops. The transverse slice at z = 30Rj (panel 2c) indicates weak interaction

between the jet and the external medium at this distance. Some circular circulation is seen.

In the strongly magnetized case with the external wind (RMHDBw), the helical KH mode is

damped and can just barely be seen out to z = 35Rj in the transverse axial slice (panel 2e).

The transverse slice at z = 30Rj indicates negligible interaction between jet and external

medium and no circular circulation (panel 2f).

It is immediately clear from Figure 1 that presence of the wind provides a stabilizing

influence in the weakly magnetized case. Further comparison with Figure 2 shows that the

presence of a strong magnetic field provides a stabilizing influence and complete stabilization

in the presence of the strongly magnetized wind.

To investigate simulation results quantitatively, we take one-dimensional cuts through

the computational box parallel to the z-axis at radial distances x/Rj = 0.2, 0.5, and 0.8 on

the transverse x-axis. The results for weakly magnetized cases with/without the external

wind are shown in Figures 3, 4, & 5 for precession frequencies, ωRj/uj = 0.4, 0.93, & 2.69

respectively. The results for the strongly magnetized cases are shown in Figures 6 & 7 for

precession frequencies ωRj/uj = 0.93, & 2.69 respectively. In the figures, ux and uy velocity

components correspond to radial ur and azimuthal uφ velocity components in cylindrical

geometry.

In the weakly magnetized cases oscillation from the growing helical KH mode is seen

in all cases. From the plots of radial and transverse velocities, the dominant wavelengths of

oscillation are λ/Rj ∼ 13, 6, & 2 for low, intermediate, and high frequency precession with

no wind and with a measurable lengthening to λ/Rj ∼ 14 for low frequency precession with

the wind. For the high-frequency case without the external wind, the azimuthal velocity

component suggests a beat pattern with wavelength, λn
beat(ω3) . 20Rj. From the axial

velocities near the jet axis, we see that jet flow is disrupted at z ∼ 25Rj, z ∼ 32Rj, and

possibly for z & 50Rj for the low, intermediate and high precession frequency no wind cases

respectively. Jet flow is disrupted at z ∼ 43Rj, z ∼ 35Rj and possibly for z & 50Rj for the

low, intermediate and high frequency precession wind cases respectively. Thus, the external

wind reduces the growth of KH instability and delays the onset of flow disruption. The

large dips in the axial velocity near the jet surface are caused by sideways motion of the

jet surface. Dips in the axial velocity occur more deeply inside the jet surface for lower
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frequency precession. The presence of the external wind reduces these effects somewhat.

Quantitative simulation results for the strongly magnetized cases with/without the ex-

ternal wind are shown in Figures 6 and 7. In the absence of the external wind (RMHDBn

and RMHDCn) growing oscillation from helical KH instability is seen. However, spatial

growth is much slower than for the comparable weakly magnetized cases. Comparison with

the weakly-magnetized cases (RHDBn and RHDCn), shows that the magnetic field reduces

the growth rate of KH instabilities such that any disruption of collimated flow will lie at

z ≫ 40Rj. In the presence of the external wind (RMHDBw and RMHDCw) the initial

oscillation is damped. Damping is more rapid for the intermediate frequency perturbation

than for the high frequency perturbation. Plots of radial and transverse velocities, and the

radial magnetic field component shown in one-dimensional cuts in Figures 6 and 7 show that

the dominant wavelengths of oscillation are λ/Rj ∼ 5 & 2 for the intermediate and high

frequency perturbations, respectively with or without the external wind. There is a possible

beat pattern in the azimuthal velocity component with λmn
beat(ω2) ∼ 10 Rj for z < 20 Rj in

the no wind high frequency case. The presence of the wind results in more readily seen beat

patterns accompanying the damped oscillations. The beat pattern is best seen in the radial

magnetic field amplitude (Fig. 6f and Fig. 7f). At the intermediate perturbation frequency

the beat wavelength is λmw
beat(ω2) & 20 Rj. In the high-frequency case a clear beat pattern

with λmw
beat(ω3) ∼ 10 Rj is seen at z < 33 Rj but disappears at larger z.

In the next section we will compare these simulation results with theoretical predictions

for growth and damping of the helical wave mode excited by the inlet perturbations in our

numerical simulations.
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Fig. 3.— Radial velocity (ux), azimuthal velocity (uy), and axial velocity (γuz) along the

one-dimensional cuts parallel to the jet axis located at x/Rj = 0.2(solid line), 0.5(dotted

line) and 0.8(dashed line) for low-frequency precession of a weakly magnetized jet for no

wind (RHDAn)(left panels) and with an external wind (RHDAw)(right panels).
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Fig. 4.— Radial velocity (ux), azimuthal velocity (uy), and axial velocity (γuz) along the

one-dimensional cuts parallel to the jet axis located at x/Rj = 0.2(solid line), 0.5(dotted

line) and 0.8(dashed line) for intermediate frequency precession of a weakly magnetized jet

for no wind (RHDBn)(left panels) and with an external wind (RHDBw)(right panels).
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Fig. 5.— Radial velocity (ux), azimuthal velocity (uy), and axial velocity (γuz) along the

one-dimensional cuts parallel to the jet axis located at x/Rj = 0.2(solid line), 0.5(dotted

line) and 0.8(dashed line) for high frequency precession of a weakly magnetized jet for no

wind (RHDCn)(left panels) and with an external wind (RHDCw)(right panels).
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Fig. 6.— Radial velocity (ux), azimuthal velocity (uy), and radial magnetic field (Bx) along

the one-dimensional cuts parallel to the jet axis located at x/Rj = 0.2(solid line), 0.5(dotted

line) and 0.8(dashed line) for intermediate frequency precession of a strongly magnetized

jet for no wind (RMHDBn)(left panels) and with a strongly magnetized external wind

(RMHDBw)(right panels).
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Fig. 7.— Radial velocity (ux), azimuthal velocity (uy), and radial magnetic field (Bx)

along the one-dimensional cuts parallel to the jet axis located at x/Rj = 0.2(solid line),

0.5(dotted line) and 0.8(dashed line) for high frequency precession of a strongly magnetized

jet for no wind (RMHDCn) (left panels) and with a strongly magnetized external wind

(RMHDCw)(right panels).
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3. Theory and Analysis

3.1. Dispersion Relation

Stability of a jet spine-sheath or jet-wind configuration, where the sheath or wind is

much broader than the spine or jet, can be accomplished by modeling the jet/spine as a

cylinder of radius R embedded in an infinite wind/sheath.

Formally, the assumption of an infinite sheath means that the analysis could be per-

formed in the reference frame of the sheath and numerical simulations could be performed in

the reference frame of the sheath with results transformed to the source/observer reference

frame. However, it is not much more difficult to derive a dispersion relation and obtain

analytical expressions in the source/observer frame and analytical solutions to the disper-

sion relation in the source/observer frame take on simple physically revealing forms (Hardee

2007). Additionally, this approach lends itself to modeling the propagation and appearance

of jet structures viewed in the source/observer frame, e.g., helical structures in the 3C 120

jet (Hardee et al. 2005).

A dispersion relation describing the growth or damping of the normal wave modes

associated with this system can be derived if uniform conditions are assumed within the

jet/spine, e.g., having a uniform proper density, ρj, a uniform axial magnetic field, Bj =

Bj,z, and a uniform velocity, uj = uj,z, and if uniform conditions are assumed within the

external sheath/wind, e.g., having a uniform proper density, ρe, a uniform axial magnetic

field, Be = Be,z, and a uniform velocity ue = ue,z. Here the jet/spine is established in static

total pressure balance with the external wind/sheath where the total static uniform pressure

is P ∗
e ≡ Pe + B2

e/8π = P ∗
j ≡ Pj + B2

j /8π.

The dispersion relation is obtained from the linearized ideal RMHD and Maxwell equa-

tions, where the density, velocity, pressure and magnetic field are written as ρ = ρ0 + ρ1,

v = u + v1 (we use v0 ≡ u for notational reasons), P = P0 + P1, and B = B0 + B1, where

subscript 1 refers to a perturbation to the equilibrium quantity with subscript 0. Addition-

ally, the Lorentz factor γ2 = (γ0 + γ1)
2 ≃ γ2

0 + 2γ4
0u · v1/c

2 where γ1 = γ3
0u · v1/c

2. It is

assumed that the initial equilibrium system satisfies the zero order equations. Details of the

derivation for the fully relativistic case can be found in Hardee (2007).

In cylindrical geometry a random perturbation ρ1, v1 B1 and P1 can be considered to

consist of Fourier components of the form

f1(r, φ, z, t) = f1(r) exp[i(kz ± nφ − ωt)] (3)

where the zero order flow is along the z-axis, and r is in the radial direction with the jet/spine

bounded by r = R. In cylindrical geometry n is an integer azimuthal wavenumber, for n > 0
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waves propagate at an angle to the flow direction, and +n and −n give wave propagation in

the clockwise and counter-clockwise sense, respectively, when viewed in the flow direction.

In equation (1) n = 0, 1, 2, 3, 4, etc. correspond to pinching, helical, elliptical, triangular,

rectangular, etc. normal mode distortions of the jet, respectively. Propagation and growth

or damping of the Fourier components can be described by a dispersion relation of the form

βj

χj

J
′

n(βjR)

Jn(βjR)
=

βe

χe

H
(1)′

n (βeR)

H
(1)
n (βeR)

. (4)

In the dispersion relation Jn and H
(1)
n are Bessel and Hankel functions, and the primes denote

derivatives of the Bessel and Hankel functions with respect to their arguments. In equation

(4)

χj ≡ γ2
j γ

2
AjWj

(

̟2
j − κ2

jv
2
Aj

)

, (5a)

χe ≡ γ2
eγ

2
AeWe

(

̟2
e − κ2

ev
2
Ae

)

, (5b)

and

β2
j ≡

[

γ2
j

(

̟2
j − κ2

ja
2
j

) (

̟2
j − κ2

jv
2
Aj

)

v2
msj̟

2
j − κ2

jv
2
Aja

2
j

]

, (6a)

β2
e ≡

[

γ2
e (̟2

ex − κ2
ea

2
e) (̟2

e − κ2
ev

2
Ae)

v2
mse̟

2
e − κ2

ev
2
Aea

2
e

]

. (6b)

In equations (5a & 5b) and equations (6a & 6b) ̟2
j,e ≡ (ω − kuj,e)

2 and κ2
j,e ≡ (k − ωuj,e/c

2)
2
,

γj,e ≡ (1 − u2
j,e/c

2)−1/2 is the flow Lorentz factor, γAj,e ≡ (1 − v2
Aj,e/c

2)−1/2 is the Alfvén

Lorentz factor, W ≡ ρ + [Γ/ (Γ − 1)] P/c2 is the enthalpy, a is the sound speed, vA is the

Alfvén wave speed, and vms is a magnetosonic speed. The sound speed is defined by

a ≡
[

ΓP

ρ +
(

Γ
Γ−1

)

P/c2

]1/2

,

where 4/3 ≤ Γ ≤ 5/3 is the adiabatic index. The Alfvén wave speed defined by

vA ≡
[

V 2
A

1 + V 2
A/c2

]1/2

where V 2
A ≡ B2

0/(4πW0) is equivalent to equation (2). A magnetosonic speed corresponding

to the fast magnetosonic speed for propagation perpendicular to the magnetic field (e.g.,

Vlahakis & Königl 2003) is defined by

vms ≡
[

a2 + v2
A − a2v2

A/c2
]1/2

=
[

a2/γ2
A + v2

A

]1/2
.
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Each normal mode n contains a single fundamental wave (ω → 0, k → 0, ω/k > 0) and

multiple body wave(ω → 0, k > 0, ω/k → 0) solutions that satisfy the dispersion relation.

In the numerical simulations the jet/spine was precessed in a manner designed to trigger

the n = 1 fundamental helical mode. Previous theoretical and simulation work has shown

a sufficiently close coupling between fundamental and body modes that the simulation may

excite the first body mode as well. In what follows here we consider the n = 1 helical

fundamental and first body mode solutions to the dispersion relation as being relevant to

the numerical simulations performed here.

3.2. The Helical Mode

In the low frequency limit the helical fundamental mode has an analytic wave solution

given by

ω

k
=

[ηuj + ue] ± iη1/2
[

(uj − ue)
2 − V 2

As/γ
2
j γ

2
e

]1/2

(1 + V 2
Ae/γ

2
ec

2) + η(1 + V 2
Aj/γ

2
j c

2)
(7)

where η ≡ γ2
j Wj /γ2

eWe and a “surface” Alfvén speed is given by

V 2
As ≡

(

γ2
AjWj + γ2

AeWe

) B2
j + B2

e

4πWjWe

. (8)

In equation (8) note that the Alfvén Lorentz factor can be written as γ2
Aj,e = 1 + V 2

Aj,e/c
2.

The jet is predicted to be stable to the helical fundamental mode when

(uj − ue)
2 − V 2

As/γ
2
j γ

2
e < 0 . (9)

Thus, as might be anticipated, the growth rate is directly related to the difference between

the magnitude of a “shear” speed, (uj − ue)
2, and a “surface” Alfvén speed. Note that

the “surface” Alfvén speed can be greater than the speed of light and is not a physical

wave speed. The growth rate is also reduced by the spine Lorentz factor through η in the

denominator of eq. (7). Finally, the real part of eq. (7) directly provides an estimate of the

increase in helical pattern speed resulting from the external sheath flow, and this increase

when combined with a decrease in the temporal growth rate implies an increase in the spatial

growth length.

In the low frequency limit the real part of the first helical body wave solution has an

analytic solution given approximately by

kR ≈ kminR ≡ 5

4
π

[

v2
msju

2
j − v2

Aja
2
j

γ2
j (u

2
j − a2

j)(u
2
j − v2

Aj)

]1/2

. (10)
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In this low frequency limit the body wave solution exists only when kminR has a positive

real part. This requires that
[

v2
msju

2
j − v2

Aja
2
j

γ2
j (u

2
j − a2

j)(u
2
j − v2

Aj)

]

> 0 . (11)

Thus, the first helical body mode exists when the jet is supersonic and super-Alfvénic,

i.e., u2
j − a2

j > 0 and u2
j − v2

Aj > 0, or in a limited velocity range given approximately by

a2
j > u2

j > [γ2
sj/(1 + γ2

sj)]a
2
j when v2

Aj ≈ a2
j , where γsj ≡ (1 − a2

j/c
2)−1/2 is a sonic Lorentz

factor.

For a supermagnetosonic jet, the helical fundamental and first body modes can have a

distinct maximum in the growth rate at some resonant frequency. The resonance condition

can be evaluated analytically in either the fluid limit where a ≫ VA or in the magnetic limit

where VA ≫ a. Note that in the magnetic limit, magnetic pressure balance implies that

Bj = Be. In these cases a necessary condition for resonance is that

uj − ue

1 − ujue/c2
>

vwj + vwe

1 + vwjvwe/c2
, (12)

where vwj ≡ (aj, vAj) and vwe ≡ (ae, vAe) in the fluid or magnetic limits, respectively. This

necessary condition for resonance indicates that we are supersonic or super-Alfvénic when

the shear speed exceeds a physical “surface” wave speed. When this condition is satisfied it

can be shown that the wave speed at resonance is

vw ≈ v∗
w ≡ γj(γwevwe)uj + γe(γwjvwj)ue

γj(γwevwe) + γe(γwjvwj)
(13)

where γw ≡ (1−v2
w/c2)−1/2 is the sonic or Alfvén Lorentz factor accompanying vwj ≡ (aj, vAj)

and vwe ≡ (ae, vAe) in the fluid or magnetic limits, respectively. The resonant wave speed

and maximum growth rate occur at a frequency given by

ωR/vwe ≈ ω∗
mR/vwe ≡

3π/4 + mπ
[

(1 − ue/v∗
w)2 − (vwe/v∗

w − uevwe/c2)2
]1/2

. (14)

In equation (14) m = 0, 1 specifies the fundamental and first body modes, respectively. A

resonant wavelength is given by λ ≈ λ∗
m ≡ 2πv∗

w/ω∗
m and can be calculated from

λ∗
m ≡ 2π

3π/4 + mπ

(

γe

vwe

)

{

(v∗
w − ue)

2 −
[

vwe − (vweue/c
2)v∗

w

]2
}1/2

R . (15)

The resonant frequency is found to be largely a function of the sound and Alfvén wave

speeds in the sheath and the shear speed, uj − ue (Hardee 2007). The resonant frequency
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increases as the sound and Alfvén wave speeds increase and as the shear speed declines. In

the limit
uj − ue

1 − ujue/c2
−→ vwj + vwe

1 + vwjvwe/c2
,

the resonant frequency ω∗
mR/vwe → ∞. In general, When the sound or Alfvén wave speed

increases relative to the jet speed there is an increase in the growth rate at the higher

resonant frequency accompanying an increase in the sound or Alfvén wave speed relative to

the jet speed. On the other hand, the growth rate at resonance decreases as the shear speed,

uj − ue, declines. This decline in the growth rate is also indicated by equation (8) which

applies to fundamental mode frequencies up to an order of magnitude below resonance. As

the resonant frequency increases equation (8) applies to increasingly higher fundamental

mode frequencies.

Numerical solution of the dispersion relation is necessary to obtain accurate values for

growth or damping rates as fundamental mode frequencies approach and exceed the resonant

frequency. In general, the behavior of growth or damping associated with the first body mode

must be obtained by numerical solution of the dispersion relation at all frequencies. In the

high frequency limit the real part of the fundamental and first body mode solutions to the

dispersion relation tend towards the analytic limiting form

ω

k
≈ uj ± vwj

1 ± vwjuj/c2
. (16)

which describes sound waves vwj = aj or Alfvén waves vwj = vAj propagating with and

against the jet flow inside the jet. Note that at high frequencies waves propagate in the

spine fluid with speeds that are independent of the surrounding sheath and are decoupled

from the spine sheath boundary.

3.3. Numerical Solution to the Dispersion Relation

In general, equations (7) and (10) provide initial estimates at low frequencies to the

helical fundamental and first body mode solutions that can then be followed by root finding

techniques to higher frequencies. The results of numerical solution to the dispersion relation

for the parameters appropriate to the numerical simulations shown in section 2 are displayed

in Figure 8. It should be noted that not all possible solutions are shown or have necessarily

been found by the root finding technique. In general, in the weakly magnetized case funda-

mental (S) mode solutions consist of a growing (shown) and damped (not shown) solution

pair with comparable growth and damping rates (see eq. 7) and first body (B1) mode solu-

tions consist of a real and growing or damped solution pair. The presence of the external

wind flow leads to reduced growth of the S mode and weak damping of the B1 mode.
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Fig. 8.— Solutions of the dispersion relation for helical fundamental (red lines) and first

body (green lines) modes for weakly magnetized (aj,e ≫ vAj,e) and strongly magnetized

(aj,e ∼ vAj,e) jet simulations without a surrounding outflow (ue = 0) and with a surrounding

0.5 c outflow (ue = 0.5). Dispersion relation solutions show the real, krRj, (dashed lines)

and imaginary, kiRj, (dash-dot lines) parts of the dimensionless wavenumber normalized by

the jet radius, Rj, as a function of the dimensionless angular frequency, ωRj/uj, normalized

by the jet radius and jet speed, uj. Where the imaginary part of the wavenumber is shown

in blue, the solution is damped. Immediately under the panel showing a dispersion relation

solution for fundamental (S) and first body (B1) modes is a panel that shows the wavelength,

λ/Rj, (dash-dot lines) and wave speed, vw/c, (dotted lines). The angular driving frequencies

used in the numerical simulations are indicated by the vertical solid lines.
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The solution structure is more complex in the strongly magnetized case. Comparable

sound and Alfvén wave speeds have led to an increased complexity compared to the weakly

magnetized case solutions or when compared to the analytically predicted results for Alfvén

wave speed greatly exceeding the sound speed. In the absence of magnetized sheath flow S

mode solutions again consist of a growing (shown) and damped (not shown) solution pair.

Now however, we find multiple growing solutions associated with the B1 mode evident at the

lower frequencies (see the lower left panel in Figure 8). A modest damping rate accompanies

the crossing of the real part of these multiple body mode solutions. The complex structure

of the first body mode solution shown in Figure 8 for the strongly magnetized cases has been

seen previously in a non-relativistic stability analysis (see Figure 20 in Hardee et al. 1995).

At the lowest frequencies, ω < ω1, the first body mode consists of a solution pair whose real

part can be identified with the descending and constant real part of the wavenumber. At

frequencies above the crossing point, ω > ω1, the rapidly rising real part of the wavenumber

connects to the second body mode at a frequency ω > ω2.

At the higher frequencies the B1 mode is similar to the weakly magnetized case. In the

presence of magnetized sheath flow, there is significant difference in growth and damping

rates for the S mode solution pair. Weak growth is associated with the slower, Ss, moving

shorter wavelength solution and weak damping is associated with the faster, Sf , moving

longer wavelength solution. At the intermediate frequency, ω2, and below the growth rate is

larger than the damping rate but at the higher frequencies somewhat above ω2 the damping

rate is larger than growth rate for the S mode solution pair. The presence of magnetized

sheath flow leads to damping of the B1 mode at the lower frequencies where in the absence

of magnetized sheath flow there was modest growth and a modest high frequency damping

rate maximum is seen where B1 intersects Ss.

The wavelengths and growth/damping lengths normalized to the jet radius for the pre-

cession frequencies ω1, ω2 and ω3 used in the weakly magnetized simulations are given in

Table 2. Weak damping (wd) indicates a damping length longer than the grid length in the

numerical simulations. No entry in the growth/damping length column indicates a purely

real solution. Wavelengths observed in the simulations are in excellent agreement with the

theoretically predicted wavelengths.

When no external wind is present the dispersion relation solutions show growth of the

fundamental (S) mode at precession frequencies ω1 and ω2 and growth of the body mode

at higher frequencies. In the weakly magnetized case coupling between fundamental and

first body (B1) modes is indicated by the solution structure just above precession frequency,

ω3, where the real and imaginary parts of the S and B1 mode solutions are comparable.

Thus, we expect to see an indication of interaction in the ω3 weakly magnetized simulation
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between the S and B1 modes with a beat wavelength of λbeat = 16.8 Rj. This agrees with

the observed λn
beat(ω3) . 20 Rj in the simulation.

External wind flow in the weakly magnetized case leads to weak damping of the B1

mode and reduces the growth rate and increases the growth length, ℓ ≡ k−1
i , of the S

mode by about a factor of two at all frequencies. However, the numerical simulation for

the high frequency precession of a weakly magnetized jet (RHDC), see Figure 5, indicates a

larger perturbation growth for the wind case than for the no wind case where the dispersion

relation solutions indicate faster growth for the no wind case. The most likely reason for this

difference is a non-linear surface and first body mode interaction in the no wind case that is

indicated by the observed beat pattern in the no wind high frequency simulation. Here the

different radial structure of the fundamental and body mode, see Hardee et al. (2001), with

comparable wavelength could be responsible for destructive interference and the reduced

transverse velocity growth seen in the no wind simulation.

The wavelengths and growth/damping lengths normalized to the jet radius for precession

frequencies ω1, ω2 and ω3 are given in Table 3 for the strongly magnetized simulation param-

eters. Weak damping (wd) or weak growth (wg) indicate a damping or growth length longer

than the grid length in the numerical simulations. No entry in the growth/damping length

column indicates a purely real solution. Wavelengths observed in the strongly magnetized

simulations are also in excellent agreement with the theoretically predicted wavelengths.

When no external wind is present the dispersion relation solutions for the strongly

magnetized case show growth of both the S and B1 modes. The growth rate of the S mode

is reduced by about 25% at frequencies ω1 and ω2 and by over a factor of three at ω3 when

compared to the weakly magnetized case. Thus, we expect to see the observed increased

spatial growth length in the strongly magnetized no wind simulation when compared to the

weakly magnetized case. The B1 mode now grows at frequencies ω1 and ω2 in addition to

growth at frequency ω3. Growth of the B1 mode at ω1 is comparable to growth of the S

mode but is much less than the S mode at ω2 so would not be expected to appear in the

simulation. Note that S and B1 mode wavelengths and growth rates at ω3 are comparable

so we expect an S mode and B1 mode interaction at a beat wavelength λbeat = 10.6 Rj. This

agrees with a weak beat pattern in vφ and Br (see Figure 7) at λmn
beat(ω3) ∼ 10 Rj seen in

the strongly magnetized no wind ω3 simulation.

The strongly magnetized external wind flow leads to a reduced growth rate of the

Ss mode by over an order of magnitude at all frequencies. The damping rate of the Sf

mode at frequencies ω ≤ ω2 is reduced more than the Ss growth rate by about a factor

of two. Note that for the all the other cases the low frequency growth rate of the Ss

and damping rate (not shown) of the Sf modes are comparable. At the lower frequencies,
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ω < ω2 the B1 mode is damped. At frequencies ω2 < ω < ω3 the B1 mode is either

purely real or is weakly growing. At the intermediate precession frequency the strongly

magnetized wind case numerical simulation showed damping and a beat pattern in Br (see

Figure 6) with λmw
beat(ω2) ∼ 20 Rj. The beat pattern can be understood as interaction

between the weakly growing Ss and more weakly damped Sf modes with predicted beat

wavelength λbeat = 23.7 Rj. At the high precession frequency the strongly magnetized

wind case simulation showed slower damping and a beat pattern in Br (see Figure 7) with

λmw
beat(ω3) ∼ 10 Rj. The beat pattern can be understood again as interaction between the

weakly growing Ss and now more strongly damped Sf modes with predicted beat wavelength

λbeat = 10.0 Rj.

At the intermediate and high frequencies the dispersion relation solutions indicate weak

growth of the Ss mode but the simulations suggest damping. However, the radial magnetic

field component in Figures 6 & 7 show a beat pattern indicating an interaction between the

weakly growing and weakly damped S modes. Normally, a high damping rate of the Sf mode

would eliminate observable interaction. We suggest that the observed damping at ω2 and the

lesser damping at ω3 is partially a result of this interaction. The lesser damping at ω3 occurs

as interaction is reduced because of the considerably larger damping rate of the Sf mode at

the higher frequency. It is also possible that some of the observed damping is a result of

numerical dissipation given the relatively low numerical resolution of the simulations.

We can attempt to quantify the growth or damping of the perturbations seen in the

numerical simulations and compare the observed rates relative to theoretical predictions.

Our estimates of the growth or damping e-folding length determined from the simulations

are given in Table 4. The estimates are obtained by comparing a perturbation amplitude A1,

in vr, determined at z1 with a perturbation amplitude A2 determined at z2. The e-folding

growth or damping length ℓ is found from A2/A1 = exp[(z2−z1)/ℓ]. We always choose z1 > 3

to minimize inlet effects. The range in z over which a growth or damping length was esti-

mated is included in parentheses following the e-folding length. An indication of non-linear

effects such as an observed beat pattern or amplitude saturation is indicated by an asterisk.

In these cases the values provide no more than qualitative guidelines. The low frequency

result for the no wind case is suspect as a shorter wavelength perturbation dominates growth

at z > 22 and the high frequency cases all involve non-linear mode coupling, indicated by a

beat wavelength, or appear amplitude saturated. In general, the estimates vary qualitatively

like the theoretical predictions.

We can perform a more quantitative comparison of the moderate frequency, ω = ω2,

results with theoretical growth/damping rate predictions. The simulation growth lengths

are 1.7 − 2.5 times longer than theoretically predicted growth lengths. The weak damping
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observed in the magnetized wind case at z > 26 when compared to the very weak growth

predicted is consistent with this picture. Part of the difference between theory and simulation

growth lengths can be the result of development of a shear layer in the simulations where a

sharp boundary between spine and sheath is assumed theoretically. Additional differences

can be a numerical effect resulting from both the narrow width of the computational domain

and the numerical resolution. The narrow width of the computational domain means that

some interaction with the domain boundary is unavoidable. Our relatively low numerical

resolution of 20 computational zones across the jet diameter has the effect of increasing the

numerical viscosity and resistivity. We do expect this to affect spatial growth lengths in

the manner observed. We note that resolution studies in 2D RHD simulations performed

by Perucho et al. (2004a, 2004b) suggest that only extremely high numerical resolution will

recover correct quantitative growth or damping lengths. Excellent quantitative agreement

between theoretically predicted and our numerically observed wavelengths indicates that we

are not experiencing serious resolution or boundary effects.

4. Conclusion

We have performed numerical simulations of weakly and strongly magnetized relativistic

jets embedded in a weakly and strongly magnetized stationary or mildly relativistic (0.5c)

sheath using the RAISHIN code (Mizuno et al. 2006a). In the numerical simulations a jet

with Lorentz factor γ = 2.5 was precessed to break the initial equilibrium configuration.

Results of the numerical simulations were compared to theoretical predictions from a normal

mode analysis of the linearized RMHD equations describing a uniform axially magnetized

cylindrical relativistic jet embedded in a uniform axially magnetized moving sheath.

In the fluid limit the present simulation results confirm earlier results obtained by Hardee

& Hughes (2003), who found that the development of sheath flow around a relativistic jet

spine explained the partial stabilization of the jets in their numerical simulations. Here we

confirm this earlier result and have extended the investigation to the influence of magnetic

fields with simulations specifically designed to test for stabilization of the relativistic jet spine

by strong magnetic fields and a weakly relativistic wind. The prediction of increased stability

of the weakly-magnetized system with mildly relativistic sheath flow and the stabilization

of the strongly-magnetized system with mildly relativistic sheath flow is verified by the

numerical simulation results.

The simulation results show that theoretically predicted wavelengths and thus wave

speeds are relatively accurate. On the other hand, growth rates and spatial growth lengths

derived from the linearized equations can only be used to provide broad guidelines to the
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rate at which perturbations grow or damp. Nevertheless, the present results can be extended

to other parameter ranges with reduced growth occurring as

(uj − ue)
2 → V 2

As/γ
2
j γ

2
e ,

and stabilization occurring when (eq. 9)

(uj − ue)
2 < V 2

As/γ
2
j γ

2
e .

In the above expressions

V 2
As ≡

(

γ2
AjWj + γ2

AeWe

) B2
j + B2

e

4πWjWe

,

represents a “surface” Alfvén speed (see eqs. 7 & 8), γAj,e and γj,e are Alfvén and flow Lorentz

factors, respectively; uj,e, Bj,e and Wj,e are the flow, axial magnetic field and enthalpy in the

(j) jet or (e) external sheath.

Formally, the present results and expressions apply only to magnetic fields parallel to

an axial spine-sheath flow in which conditions within the spine and within the sheath are

independent of radius and the sheath extends to infinity. A rapid decline in perturbation

amplitudes in the sheath as a function of radius is governed by the Hankel function’s radial

dependence. This suggests that the present analysis will provide a reasonable approximation

to a finite sheath provided the sheath is more than about three times the spine radius in

thickness.

In the present regime where flow and magnetic fields are parallel, current driven (CD)

modes are stable (Isotomin & Pariev 1994, 1996). However, in the strong magnetic field

regime we expect the magnetic fields in realistic jets and sheaths to have a significant toroidal

component and an ordered helical structure. Provided radial gradients in magnetic fields

and other jet spine/sheath properties are not too large we might expect the present results

to remain approximately valid where uj,e and Bj,e refer to the axial or poloidal velocity

and field components only. This conclusion is suggested by theoretical results, albeit non-

relativistic and for a two dimensional slab jet, indicating that a critical parameter governing

KH stabilization is the difference between the projection of the velocity shear and the Alfvén

speed on the normal mode wavevector (Hardee et al. 1992). In the work presented here

magnetic and flow field are parallel and project equally on the wavevector which for the

helical mode lies at an angle θ = tan−1(1/kR) relative to the jet axis.

If flow and magnetic fields are not parallel, the projection of flow velocity and Alfvén

velocity on the wavevector is different and this will modify the stability condition somewhat.

Of course, helical magnetic fields (Appl & Camenzind 1992), axially magnetized jet rota-

tion in the subsonic limit (Bodo et al. 1996), and a radially stratified axial velocity profile
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(Birkinshaw 1991) do modify the KH modes. Nevertheless, in the helically twisted magnetic

and flow field regime likely to be relevant to most astrophysical jets where CD modes are

unstable (Lyubarskii 1999), there can be competition between CD and KH modes. At least

in the force-free magnetic field regime, KH modes can dominate CD modes when both are

unstable (Appl 1996).

While the normal Fourier modes, such as the helical mode that we have considered in

this work, are the same in KH and CD regimes, the conditions for instability, the radial

structure, the growth rate and mode motions are different. Non-relativistic simulation work

(e.g., Lery et al. 2000; Baty & Keppens 2003; Nakamura & Meier 2004) suggests that CD

structure is internal and moves with nearly the jet speed. On the other hand, KH structure

is surface driven and can move at speeds much less than the jet speed. These differences

may serve to identify the source of helical or other moving structure on relativistic jet flows

and allow determination of jet properties near to the central engine required to produce such

structure.
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Table 1. Models and Parameters

Case ωRj/uj ue ae/c aj/c vAe/c vAj/c

RHDAn 0.40 0.0 0.574 0.511 0.0682 0.064

RHDBn 0.93 0.0 0.574 0.511 0.0682 0.064

RHDCn 2.69 0.0 0.574 0.511 0.0682 0.064

RHDAw 0.40 0.5 0.574 0.511 0.0682 0.064

RHDBw 0.93 0.5 0.574 0.511 0.0682 0.064

RHDCw 2.69 0.5 0.574 0.511 0.0682 0.064

RMHDBn 0.93 0.0 0.30 0.226 0.56 0.45

RMHDCn 2.69 0.0 0.30 0.226 0.56 0.45

RMHDBw 0.93 0.5 0.30 0.226 0.56 0.45

RMHDCw 2.69 0.5 0.30 0.226 0.56 0.45

Table 2. Wave & Growth/Damping lengths: Weakly Magnetized

ωRj/uj λS(0) ℓS(0) λB(0) ℓB(0) λS(ue) ℓS(ue) λB(ue) ℓB(ue)

0.40 13.0 6.8g 4.3 — 14.5 14.7g 4.4 wd

0.93 5.4 3.3g 3.2 — 6.2 6.9g 3.1 wd

2.69 1.83† 1.9g 1.65† 3.3g 2.14 2.7g 1.58 wd

†(λn
beat)

−1 = λ−1
B − λ−1

S
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Table 3. Wave & Growth/Damping lengths: Strongly Magnetized

ωRj/uj λS(0) ℓS(0) λB(0) ℓB(0) λS(ue) ℓS(ue) λB(ue) ℓB(ue)

0.40 12.8 9.7g

[

4.65

5.04

] [

−−
10.9g

] [

11.7

15.1

] [

wg

wd

] [

4.2

4.6

] [

38d

wd

]

0.93 5.4 5.7g

[

2.38

3.15

] [

42g

−−

] [

5.1

6.5

]

‡
[

62g

wd

]

3.1 —

2.69 1.94† 6.2g 1.64† 7.4g

[

1.77

2.15

]

‡
[

wg

19.6d

]

1.69 wg

†(λmw
beat)

−1 = λ−1
B − λ−1

S

‡(λmw
beat)

−1 = λ−1
Ss

− λ−1
Sf

Table 4. Simulation Growth/Damping e-folding lengths

ωRj/uj RHDn RHDw RMHDn RMHDw

0.40 26 (4-22) 30 (3-40) — —

0.93 9 (5-22) 12 (4-38) 14 (5-37) > 25∗ wd (26-43)

2.69 14∗ (11-27) 23∗ (7-27) > 25∗ wg (11-25) > 19∗ wd (18-35)

∗mode interaction or saturation


